“ESP32-S3 AI智能摄像头”接入Kimi图像理解——盲人AI眼镜
本帖最后由 云天 于 2025-3-27 19:47 编辑【项目背景】
DF创客社区近期开启了福利发放活动,其中一项福利是提供人工智能设备“ESP32-S3 AI智能摄像头模块”的免费试用。尽管试用名单尚未公布,但我已按捺不住内心的期待,提前从DF创客商城购买了一台。如果我有幸入选试用名单,我计划开展一个双摄像头模块项目,探索更多的可能性。
【项目设计】
本项目的设计灵感来源于产品使用教程中的思路。项目的核心是“ESP32-S3 AI智能摄像头模块”,它负责采集图像数据。与此同时,电脑上的Python程序将对采集到的图像进行处理。具体而言,Python程序会将获取的图像发送给Kimi大模型进行图像理解,随后将模型返回的文本信息发送给讯飞语音合成平台,生成语音反馈。最终,利用Pygame库在电脑上播放反馈的音频。
【项目功能】
本项目将“ESP32-S3 AI智能摄像头模块”巧妙地固定在一副眼镜上,让盲人佩戴这副眼镜采集图像。电脑端会通过语音播放图像分析结果,帮助盲人了解当前室内的环境情况。这一功能旨在为视障人士提供更便捷、更直观的环境感知方式,提升他们的生活质量和独立性。
【迭代设想】
目前,项目的图像处理和语音合成功能主要依赖电脑端实现。为了进一步优化项目,我们计划将这些功能移植到“ESP32-S3 AI智能摄像头模块”上,使其能够独立运行。这样,项目将不再受限于电脑设备,能够更灵活地应用于各种场景,如户外、公共场所等,从而扩大项目的应用范围和实用性。
【程序设计一】
ESP32-S3端程序
使用“产品维库”中的教程,上传程序——视频图传。
步骤
1.在arduino IDE中选择File->Examples->ESP32->Camera->CameraWebServer示例
2.使用下面的代码替换CameraWebServer中的代码(注意:需要填入WIFI账号密码)
3.打开串口监视器查看ip地址
4.通过局域网内的设备通过浏览器访问ip,点击start即可看到监控画面#include "esp_camera.h"
#include <WiFi.h>
//
// WARNING!!! PSRAM IC required for UXGA resolution and high JPEG quality
// Ensure ESP32 Wrover Module or other board with PSRAM is selected
// Partial images will be transmitted if image exceeds buffer size
//
// You must select partition scheme from the board menu that has at least 3MB APP space.
// Face Recognition is DISABLED for ESP32 and ESP32-S2, because it takes up from 15
// seconds to process single frame. Face Detection is ENABLED if PSRAM is enabled as well
#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 5
#define Y9_GPIO_NUM 4
#define Y8_GPIO_NUM 6
#define Y7_GPIO_NUM 7
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 17
#define Y4_GPIO_NUM 21
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 16
#define VSYNC_GPIO_NUM 1
#define HREF_GPIO_NUM 2
#define PCLK_GPIO_NUM 15
#define SIOD_GPIO_NUM8
#define SIOC_GPIO_NUM9
// ===========================
// Enter your WiFi credentials
// ===========================
const char *ssid = "**********";
const char *password = "**********";
void startCameraServer();
void setupLedFlash(int pin);
void setup() {
Serial.begin(115200);
Serial.setDebugOutput(true);
Serial.println();
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
config.pin_d0 = Y2_GPIO_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin_href = HREF_GPIO_NUM;
config.pin_sccb_sda = SIOD_GPIO_NUM;
config.pin_sccb_scl = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RESET_GPIO_NUM;
config.xclk_freq_hz = 20000000;
config.frame_size = FRAMESIZE_UXGA;
config.pixel_format = PIXFORMAT_JPEG;// for streaming
//config.pixel_format = PIXFORMAT_RGB565; // for face detection/recognition
config.grab_mode = CAMERA_GRAB_WHEN_EMPTY;
config.fb_location = CAMERA_FB_IN_PSRAM;
config.jpeg_quality = 12;
config.fb_count = 1;
// if PSRAM IC present, init with UXGA resolution and higher JPEG quality
// for larger pre-allocated frame buffer.
if (config.pixel_format == PIXFORMAT_JPEG) {
if (psramFound()) {
config.jpeg_quality = 10;
config.fb_count = 2;
config.grab_mode = CAMERA_GRAB_LATEST;
} else {
// Limit the frame size when PSRAM is not available
config.frame_size = FRAMESIZE_SVGA;
config.fb_location = CAMERA_FB_IN_DRAM;
}
} else {
// Best option for face detection/recognition
config.frame_size = FRAMESIZE_240X240;
#if CONFIG_IDF_TARGET_ESP32S3
config.fb_count = 2;
#endif
}
#if defined(CAMERA_MODEL_ESP_EYE)
pinMode(13, INPUT_PULLUP);
pinMode(14, INPUT_PULLUP);
#endif
// camera init
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
Serial.printf("Camera init failed with error 0x%x", err);
return;
}
sensor_t *s = esp_camera_sensor_get();
// initial sensors are flipped vertically and colors are a bit saturated
if (s->id.PID == OV3660_PID) {
s->set_vflip(s, 1); // flip it back
s->set_brightness(s, 1); // up the brightness just a bit
s->set_saturation(s, -2);// lower the saturation
}
// drop down frame size for higher initial frame rate
if (config.pixel_format == PIXFORMAT_JPEG) {
s->set_framesize(s, FRAMESIZE_QVGA);
}
#if defined(CAMERA_MODEL_M5STACK_WIDE) || defined(CAMERA_MODEL_M5STACK_ESP32CAM)
s->set_vflip(s, 1);
s->set_hmirror(s, 1);
#endif
#if defined(CAMERA_MODEL_ESP32S3_EYE)
s->set_vflip(s, 1);
#endif
// Setup LED FLash if LED pin is defined in camera_pins.h
#if defined(LED_GPIO_NUM)
setupLedFlash(LED_GPIO_NUM);
#endif
WiFi.begin(ssid, password);
WiFi.setSleep(false);
Serial.print("WiFi connecting");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
startCameraServer();
Serial.print("Camera Ready! Use 'http://");
Serial.print(WiFi.localIP());
Serial.println("' to connect");
}
void loop() {
// Do nothing. Everything is done in another task by the web server
delay(10000);
}
录音、播放声音
通过该示例可以实现录音、放音功能。烧录代码并复位开发板,LED灯点亮后开始录音5秒,LED灯熄灭后通过喇叭播放录音。
#include <Arduino.h>
#include <SPI.h>
#include "ESP_I2S.h"
#define SAMPLE_RATE (16000)
#define DATA_PIN (GPIO_NUM_39)
#define CLOCK_PIN (GPIO_NUM_38)
#define REC_TIME 5//Recording time 5 seconds
void setup()
{
uint8_t *wav_buffer;
size_t wav_size;
I2SClass i2s;
I2SClass i2s1;
Serial.begin(115200);
pinMode(3, OUTPUT);
pinMode(41, OUTPUT);
i2s.setPinsPdmRx(CLOCK_PIN, DATA_PIN);
if (!i2s.begin(I2S_MODE_PDM_RX, SAMPLE_RATE, I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_MODE_MONO)) {
Serial.println("Failed to initialize I2S PDM RX");
}
i2s1.setPins(45, 46, 42);
if (!i2s1.begin(I2S_MODE_STD, SAMPLE_RATE, I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_MODE_MONO)) {
Serial.println("MAX98357 initialization failed!");
}
Serial.println("start REC");
digitalWrite(3, HIGH);
wav_buffer = i2s.recordWAV(REC_TIME, &wav_size);
digitalWrite(3, LOW);
//Play the recording
i2s1.playWAV(wav_buffer, wav_size);
}
void loop()
{
}电脑端Python程序# 导入所需的库
import os
import base64
from openai import OpenAI
import cv2
import urllib.request
import numpy as np
from df_xfyun_speech import XfTts# 用于语音合成
import pygame,time
pygame.mixer.init()# 初始化pygame的音频模块
# 配置讯飞语音合成的参数
appId = "f6e50ac1"# 应用ID
apiKey ="11ecfe2c70c42cadda1bae3916576ec4"# API密钥
apiSecret = "NGQwMjdiYTY0ZGZkZDI5MTJlMGQ4Yzhk"# API密钥
options = {}# 配置选项
tts = XfTts(appId, apiKey, apiSecret, options)# 初始化语音合成对象
# ESP32-CAM的IP地址,用于获取摄像头图像
url = 'http://192.168.31.96:80/capture'
# 配置OpenAI的客户端
client = OpenAI(
api_key="sk-l77I27a8yfbu1hie5jj9FJOIexixS1RRdLFVEv2xbRiFsb3k",# Kimi的API密钥
base_url="https://api.moonshot.cn/v1",# Kimi的API地址
)
while True:
# 从ESP32-CAM的URL获取图像数据
img_resp = urllib.request.urlopen(url)# 打开URL获取图像数据
imgnp = np.array(bytearray(img_resp.read()), dtype=np.uint8)# 将图像数据转换为NumPy数组
image_data = cv2.imdecode(imgnp, -1)# 解码JPEG图像数据
# 创建一个窗口用于显示实时图像
cv2.namedWindow("live transmission", cv2.WINDOW_AUTOSIZE)
cv2.imshow("live transmission", image_data)# 显示实时图像
cv2.imwrite("Mind+.png", image_data)# 将图像保存为文件
# 读取保存的图像文件
with open("Mind+.png", "rb") as f:
image_data = f.read()
# 按下 'q' 键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
pass
# 将图片编码成 base64 格式的 image_url
image_url = f"data:image/{os.path.splitext('Mind+.png')};base64,{base64.b64encode(image_data).decode('utf-8')}"
# 调用Kimi的API,将图片和文字指令发送给模型
completion = client.chat.completions.create(
model="moonshot-v1-8k-vision-preview",# 使用的模型
messages=[
{"role": "system", "content": "你是 Kimi。"},# 系统角色的提示
{
"role": "user",
# 用户的输入,包含图片和文字指令
"content": [
{
"type": "image_url",# 图片部分
"image_url": {
"url": image_url,# 图片的base64编码
},
},
{
"type": "text",
"text": "请描述图片的内容。",# 文字指令
},
],
},
],
)
# 获取模型返回的描述信息
message = completion.choices.message.content
print(message)# 打印描述信息
# 将描述信息合成语音
tts.synthesis(message, "speech.wav")# 生成语音文件
pygame.mixer.Sound("speech.wav").play()# 播放语音
time.sleep(15)【程序设计二】
使用TCP发送和接收图像,具体步骤:
1. 在ESP32的代码中添加定时器或使用循环中的延时来触发图像捕获和发送。
2. 捕获一帧图像,获取图像数据的缓冲区。
3. 建立TCP连接到电脑的指定IP和端口,发送图像数据。
4. 在电脑端,用Python编写一个TCP服务器,接收数据并保存或显示图像。
ESP32-S3端程序
#include "esp_camera.h"
#include <WiFi.h>
const char* pc_ip = "192.168.1.110"; // 替换为电脑的IP
const uint16_t pc_port = 12345;
//
// WARNING!!! PSRAM IC required for UXGA resolution and high JPEG quality
// Ensure ESP32 Wrover Module or other board with PSRAM is selected
// Partial images will be transmitted if image exceeds buffer size
//
// You must select partition scheme from the board menu that has at least 3MB APP space.
// Face Recognition is DISABLED for ESP32 and ESP32-S2, because it takes up from 15
// seconds to process single frame. Face Detection is ENABLED if PSRAM is enabled as well
#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 5
#define Y9_GPIO_NUM 4
#define Y8_GPIO_NUM 6
#define Y7_GPIO_NUM 7
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 17
#define Y4_GPIO_NUM 21
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 16
#define VSYNC_GPIO_NUM 1
#define HREF_GPIO_NUM 2
#define PCLK_GPIO_NUM 15
#define SIOD_GPIO_NUM8
#define SIOC_GPIO_NUM9
// ===========================
// Enter your WiFi credentials
// ===========================
const char *ssid = "TP-LINK_CB88";
const char *password = "jiaoyan2";
//void startCameraServer();
void setupLedFlash(int pin);
void setup() {
Serial.begin(115200);
Serial.setDebugOutput(true);
Serial.println();
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
config.pin_d0 = Y2_GPIO_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin_href = HREF_GPIO_NUM;
config.pin_sccb_sda = SIOD_GPIO_NUM;
config.pin_sccb_scl = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RESET_GPIO_NUM;
config.xclk_freq_hz = 20000000;
config.frame_size = FRAMESIZE_UXGA;
config.pixel_format = PIXFORMAT_JPEG;// for streaming
//config.pixel_format = PIXFORMAT_RGB565; // for face detection/recognition
config.grab_mode = CAMERA_GRAB_WHEN_EMPTY;
config.fb_location = CAMERA_FB_IN_PSRAM;
config.jpeg_quality = 12;
config.fb_count = 1;
// if PSRAM IC present, init with UXGA resolution and higher JPEG quality
// for larger pre-allocated frame buffer.
if (config.pixel_format == PIXFORMAT_JPEG) {
if (psramFound()) {
config.jpeg_quality = 10;
config.fb_count = 2;
config.grab_mode = CAMERA_GRAB_LATEST;
} else {
// Limit the frame size when PSRAM is not available
config.frame_size = FRAMESIZE_SVGA;
config.fb_location = CAMERA_FB_IN_DRAM;
}
} else {
// Best option for face detection/recognition
config.frame_size = FRAMESIZE_240X240;
#if CONFIG_IDF_TARGET_ESP32S3
config.fb_count = 2;
#endif
}
#if defined(CAMERA_MODEL_ESP_EYE)
pinMode(13, INPUT_PULLUP);
pinMode(14, INPUT_PULLUP);
#endif
// camera init
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
Serial.printf("Camera init failed with error 0x%x", err);
return;
}
sensor_t *s = esp_camera_sensor_get();
// initial sensors are flipped vertically and colors are a bit saturated
if (s->id.PID == OV3660_PID) {
s->set_vflip(s, 1); // flip it back
s->set_brightness(s, 1); // up the brightness just a bit
s->set_saturation(s, -2);// lower the saturation
}
// drop down frame size for higher initial frame rate
if (config.pixel_format == PIXFORMAT_JPEG) {
s->set_framesize(s, FRAMESIZE_QVGA);
}
#if defined(CAMERA_MODEL_M5STACK_WIDE) || defined(CAMERA_MODEL_M5STACK_ESP32CAM)
s->set_vflip(s, 1);
s->set_hmirror(s, 1);
#endif
#if defined(CAMERA_MODEL_ESP32S3_EYE)
s->set_vflip(s, 1);
#endif
// Setup LED FLash if LED pin is defined in camera_pins.h
#if defined(LED_GPIO_NUM)
setupLedFlash(LED_GPIO_NUM);
#endif
WiFi.begin(ssid, password);
WiFi.setSleep(false);
Serial.print("WiFi connecting");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
//startCameraServer();
//Serial.print("Camera Ready! Use 'http://");
Serial.print(WiFi.localIP());
Serial.println("' to connect");
}
void loop() {
static unsigned long lastSendTime = 0;
if (millis() - lastSendTime >= 30000) { // 每30秒发送一次
lastSendTime = millis();
camera_fb_t *fb = esp_camera_fb_get();
if (!fb) {
Serial.println("Camera capture failed");
return;
}
WiFiClient client;
if (!client.connect(pc_ip, pc_port)) {
Serial.println("Failed to connect to PC");
esp_camera_fb_return(fb);
return;
}
// 发送图像长度(4字节大端序)
uint32_t len = fb->len;
uint8_t lenBytes;
lenBytes = (len >> 24) & 0xFF;
lenBytes = (len >> 16) & 0xFF;
lenBytes = (len >> 8) & 0xFF;
lenBytes = len & 0xFF;
client.write(lenBytes, 4);
// 发送图像数据
client.write(fb->buf, fb->len);
Serial.printf("Sent %d bytes\n", fb->len);
client.stop();
esp_camera_fb_return(fb);
}
delay(1000); // 减少循环频率
}电脑端Python程序
import socket
import struct
import cv2
import numpy as np
import os
import base64
from openai import OpenAI
from df_xfyun_speech import XfTts
import pygame
pygame.mixer.init()
HOST = '0.0.0.0'# 监听所有网络接口
PORT = 12345 # 与ESP32程序相同的端口
appId = "f6e50ac1"
apiKey ="11ecfe2c70c42cadda1bae3916576ec4"
apiSecret = "NGQwMjdiYTY0ZGZkZDI5MTJlMGQ4Yzhk"
options = {}
tts = XfTts(appId, apiKey, apiSecret, options)
client = OpenAI(
api_key="sk-l77I27a8yfbu1hie5jj9FJOIexixS1RRdLFVEv2xbRiFsb3k",
base_url="https://api.moonshot.cn/v1",)
def ai_image(image_data):
cv2.imwrite("Mind+.png", image_data)
with open("Mind+.png", "rb") as f:
image_data = f.read()
# 按下 'q' 键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
pass
# 我们使用标准库 base64.b64encode 函数将图片编码成 base64 格式的 image_url
image_url = f"data:image/{os.path.splitext(image_data)};base64,{base64.b64encode(image_data).decode('utf-8')}"
completion = client.chat.completions.create(
model="moonshot-v1-8k-vision-preview",
messages=[
{"role": "system", "content": "你是 Kimi。"},
{
"role": "user",
# 注意这里,content 由原来的 str 类型变更为一个 list,这个 list 中包含多个部分的内容,图片(image_url)是一个部分(part),
# 文字(text)是一个部分(part)
"content": [
{
"type": "image_url", # <-- 使用 image_url 类型来上传图片,内容为使用 base64 编码过的图片内容
"image_url": {
"url": image_url,
},
},
{
"type": "text",
"text": "请描述图片的内容。", # <-- 使用 text 类型来提供文字指令,例如“描述图片内容”
},
],
},
],
)
message=completion.choices.message.content
print(message)
tts.synthesis(message, "speech.wav")
pygame.mixer.Sound("speech.wav").play()
def show_image(data):
try:
# 将字节数据转换为numpy数组
img_array = np.frombuffer(data, dtype=np.uint8)
# 解码JPEG图像
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
if img is not None:
# 显示图像
cv2.imshow('ESP32 Camera Stream', img)
ai_image(img)
# 按'q'键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
return False
return True
return False
except Exception as e:
print(f"图像显示错误: {str(e)}")
return False
def main():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT))
s.listen(1)
print(f"等待ESP32连接在 {PORT} 端口...")
while True:
conn, addr = s.accept()
print(f"已连接: {addr}")
with conn:
while True:
# 接收图像长度头
len_data = conn.recv(4)
if not len_data:
break
# 解析图像长度
if len(len_data) != 4:
print("无效的长度头")
break
img_len = struct.unpack('>I', len_data)
# 接收图像数据
received = 0
img_data = b''
while received < img_len:
chunk = conn.recv(min(img_len - received, 4096))
if not chunk:
break
img_data += chunk
received += len(chunk)
# 显示图像
if received == img_len:
if not show_image(img_data):
break# 用户按q键退出
else:
print(f"数据不完整: 期望 {img_len} 字节,收到 {received} 字节")
break
print("连接关闭")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("程序终止")
finally:
cv2.destroyAllWindows()
【硬件设计】
【演示视频】
https://www.bilibili.com/video/BV1pCZ3YxEPx/?share_source=copy_web
哇哇哇哇 膜拜大神!感谢大神分享!
页:
[1]