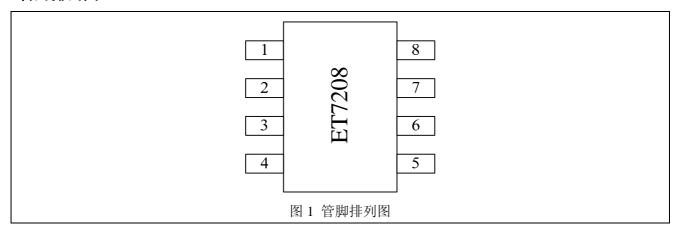


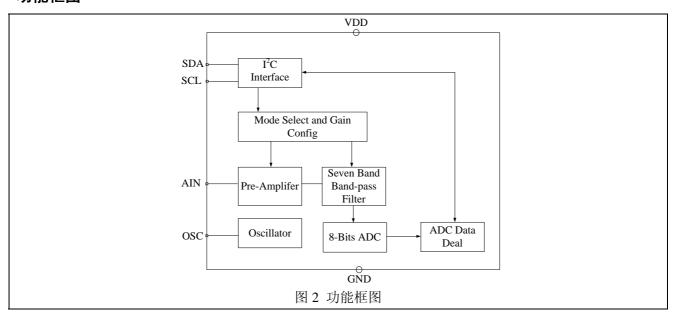
集成7段音频均衡器的频谱数据采集电路


概述

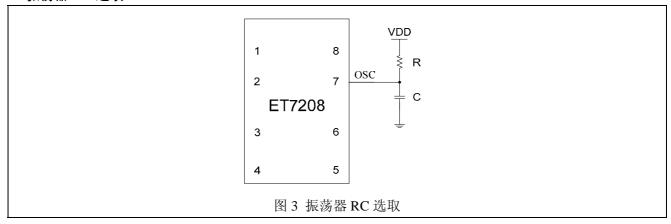
ET7208 是一颗单片集成音频 7 段图形均衡器频谱数据采集电路。在音频同步模式下,通过内置带通滤波器把 20Hz~20KHz 的输入音源信号细分为 7 个频段,再通过内置的高精度 ADC 把每个不同频段的平均幅度值转换成对应的数字值,同时计算出音源信号的总平均幅度值。在音频同步模式下 MCU 可以将音频信号不同频段的幅度数读出。

功能特点

- -18dB~+18dB 音频信号增益可调整
- 7段音频均衡器及1路总音量数据采集
- 8bits ADC
- I²C总线接口
- 用户可以通过I²C总线接口读取音频信号幅度数据
- 封装形式为 SOP8


管脚排列图

管脚说明


序号	管脚名称	I/O	功能描述			
1	SCL	I	I ² C时钟输入端口			
2	AIN	I	音频信号输入端口			
3	VDD2	-	电源端口,与 VDD 相连			
4	GND2	-	接地端口,与 GND 相连			
5	GND	-	接地端口			
6	VDD	-	电源端口			
7	OSC	I	振荡输入端口,外接一个电阻电容以决定			
			振荡频率			
8	SDA	I/O	I ² C数据输入/输出端口			

功能框图

功能说明

1.振荡器 RC 选取

OSC 频率值(Hz)	电源电压(V)	R值(Ω)	C 值 (µf)	
	5	18k	33pf	
2.5MHz	4.2	16k	33pf	
	3.3	15k	33pf	

2.I2C总线说明

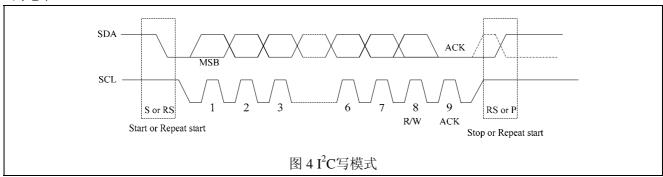
总线接口

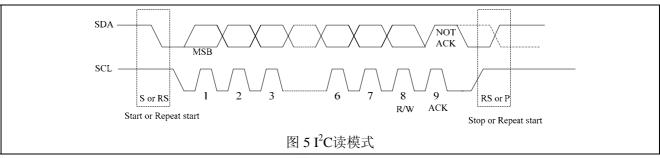
MCU 通过 SDA 和 SCL 端口与 ET7208 进行数据传输。SDA 和 SCL 组成总线接口。需要连接一个上拉电阻到电源端。

数据有效性

当 SCL 信号处于高电平时,SDA 端口上的数据都是有效稳定的。只有当 SCL 信号处于低电平时,才能改变 SDA 端口上的电平高低。

开始 (重新开始)和停止工作条件


当 SCL 信号为高电平,SDA 信号由高电平转为低电平开始工作或者重新开始工作,而 SCL 信号为高电平,SDA 信号由低电平转为高电平时停止工作。


字节格式

数据线的每个字节由8位组成。每个字节包含一个应答位。传输第一个数据是MSB。

应答

在应答时钟期间,主机使 SDA 端口处于高电平,在写模式期间,ET7208 会发出应答信号使 SDA 端口在应答期间处于低电平。在读模式期间,ET7208 不会发出应答信号从而使得 SDA 端口在应答期间处于高电平。

注: ACK=应答信号 NOTACK=无应答信号 R/W=读/模式 MSB=字节的最高位

S=起始信号 RS=重新开始信号 P=停止信号

最大时钟速度=100KBITS/S

Restart: 此时 SDA 电平翻转如波形中虚线所表示

I²C接口协议

写命令寄存器接口协议:

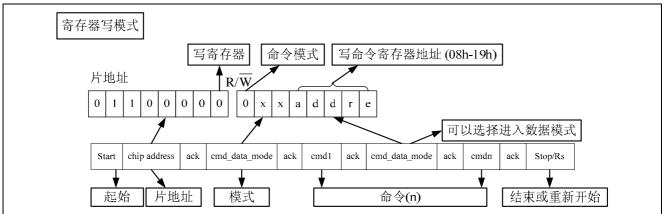
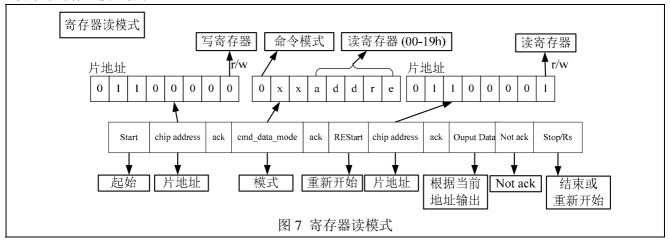



图 6 寄存器写模式

- 开始位
- 芯片地址字节=0110000b
- 读写控制位 0b(R/W)
- ACK=应答位
- 模式字节=(命令模式 0b +不关心位 xx + 命令寄存器地址位 addre)
- ACK=应答位
- 命令寄存器数据
- 停止位

读命令寄存器接口协议:

- 开始位
- 芯片地址字节=0110000b
- 读写控制位 0b (R/W)
- ACK=应答位 (0b)
- 模式字节= (命令模式 0b +不关心位 xx + 命令寄存器地址位 addre)
- 重新开始位
- 芯片地址字节=0110000b
- 读写控制位 1b(R/W)
- 读时钟
- NOTACK=无应答(1b)
- 停止位

应用举例:

I²C写命令寄存器操作

将数据 65h写入地址为 18H的寄存器,66H数据写入地址为 19H的寄存器,发送命令为: I^2 C起始 60H (片地址+ I^2 C写) 18H (命令模式+寄存器地址) 65H (寄存器的数据) 19H (命令模式+寄存器地址) 66H (寄存器的数据) I^2 C结束。

I²C读命令寄存器操作

读地址为 18H的寄存器,发送命令为: I^2 C起始 60H(片地址+ I^2 C写) 18H(命令模式+寄存器地址) I^2 C重新开始 60H(片地址+ I^2 C读)发读时钟SCL(数据输出) I^2 C结束。

默认操作:

设置模式选择寄存器(addr=08H)=01b(即 mdsel=01b,读取 ADC 数据模式,shutdown=0,开机) (其中前置运放的增益根据输入音频信号幅度的不同进行相应的设置)

显示控制寄存器(addr=0AH)=00H(显示关闭)

ET7208

3.寄存器定义

表 1 ADC 转化结果寄存器

	Addr: 00h-07	7h	Adc_one,Adc_twoAdc_eight Register		
Addr	Bit	Bit Name	Default Access Description		
00h	7:0	adc_one	00h	R	ADC 转化结果
OOII	7.0	adc_one	UUII	K	63Hz 音频数据 ADC 转化结果
01h	7:0	ada two	00h	R	ADC 转化结果
OIII	7.0	adc_two	OOH	K	160Hz 音频数据 ADC 转化结果
02h	7:0	ada thraa	00h	R	ADC 转化结果
UZII	7.0	adc_three	OOH	K	400Hz 音频数据 ADC 转化结果
03h	7:0	adc_four	00h	R	ADC 转化结果
USII	7.0	adc_four	OOH	K	1KHz 音频数据 ADC 转化结果
04h	7:0	ada fiya	00h	R	ADC 转化结果
0411	7.0	adc_five	UUII	K	2.5KHz 音频数据 ADC 转化结果
05h	7:0	odo siv	00h	R	ADC 转化结果
0311	7.0	adc_six	OOH	K	6.25KHz 音频数据 ADC 转化结果
06h	7:0	ada sayan	00h	R	ADC 转化结果
Oon	7.0	adc_seven	OOH	K	12KHz 音频数据 ADC 转化结果
07h	7:0	ada aight	00h	R	音量数据
0711	7.0	adc_eight	UUII	K	7 段频率 ADC 转化结果平均值

表2数据设置寄存器

Addr: 08h		Data Set Register				
Bit	Bit Name	Default	Access	Description		
				设置数据来源(模式选择)		
1:0	mdsel	001	R/W	00	保留	
1.0	iliusei	00b	IX/ VV	01	ADC 工作	
				10	保留	
					前置运放增益设置	
	gc	000ь	R/W	000	0db	
				001	6db	
				010	12db	
4:2				011	18db	
				100	-6db	
				101	-12db	
				110	-18db	
				111	X	
6:5	XX	XX	XX	Don't care		
7	shutdown	1b	R/W	0	开机	
,	snutdown		K/W	1	待机	

注: mdsel 是模式选择设置位:

⁽¹⁾ 为 00, 保留; (2) 为 10, 保留; (3) 为 01, 用户可以读取当前 ADC 的数据自行处理。

ET7208

表 4 显示控制寄存器 (本电路应设置为 00H)

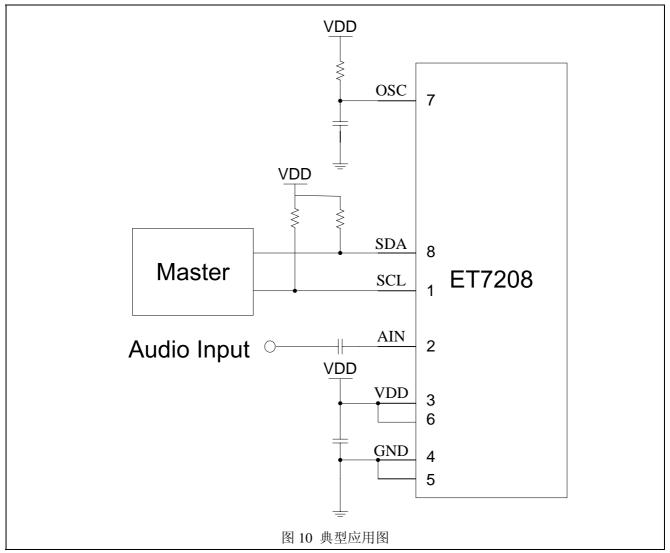
Addr: 0Ah		Display Control Register			
Bit Bit Name		Default	Access	Description	
6:0	disp_pwm	0000001	R/W	保留	
7	disp_con	0b	D/W/	0	显示关
			R/W	1	显示开

极限参数

1. 最大额定值(Ta=25℃,GND=0V)

参数	符号	符号	
提供电压	V_{DD}	<i>-</i> 0.5∼+7	V
逻辑输入电压	$V_{\rm I}$	$-0.5 \sim V_{DD} + 0.5$	V
工作温度	T_{OPE}	- 40∼+85	${\mathbb C}$
存储温度	T_{STG}	-65∼+150	$^{\circ}$

2. 推荐的工作条件(Ta=-20~+70℃,GND=0V, VDD=5V)


参数	符号	最小值	典型值	最大值	单位
逻辑电源电压	V_{DD}	2.7		5.5	V
工作电流(Note)	I_{DD2}	_	_	2	mA
关断电流	Isd	_	_	1	μΑ
高电平输入电压	V_{IH}	2		$V_{ m DD}$	V
低电平输入电压	$V_{\rm IL}$	0	_	0.4	V

注释: Note: 测试条件: **设置模式选择寄存器=01b**(即 mdsel=01b, 读取 ADC 数据模式) 显示控制寄存器(addr=0AH)=00H(显示关闭)

电参数(V_{DD}=5V,GND=0V,Ta=25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输入电压	V_{IH}	_	2	_	5	V
低电平输入电压	V_{IL}	_	0	_	0.4	V
振荡频率	fosc		2.3	2.5	2.7	MHz
输入低电平电流		Vin=0V			5	nA
输入高电平电流		Vin=VDD			5	nA

参考应用线路图

*: 此电路仅供参考。