Mind+python 防“近视”灯
【项目背景】坐在电脑前,时间长了,眼睛不免有些看不清,就愿意往前凑,越来越近。有网友在电脑前使用超声波检测人与屏幕的距离,这可能会受到肢体的干扰。而电脑一般都配有摄像头,这个设备我们可以利用起来。
【项目设计】
在Mind+Python模式下,通过mediapipe库检测人脸,提取在摄像头的宽度值,以此判断与屏幕的距离。通过Pinpong库控制Arduino,用LED灯提醒。并pynput库,模拟键盘和鼠标操作,“Ctrl+鼠标滚轮”放大和缩小网面上的文字。
【技术亮点】
使用Python中列表的“队列”功能。
队列,其实就是一个先进先出的线性表,只能在队首执行删除操作,在队尾执行插入操作。用列表表示队列,可以用append()方法实现在队尾插入元素,用pop(0)方法实现在队首删除元素。
【人脸检测】通过mediapipe库,进行人脸检测,并找到人脸的宽:detection.location_data.relative_bounding_box.width
import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for detection in results.detections:
mp_drawing.draw_detection(image, detection)
print(detection.location_data.relative_bounding_box.width)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
【亮灯提醒】
通过mediapipe人脸检测,人脸在摄像头上会出现近大远小的情况,以脸在摄像头中的宽度来判断,人眼是否离屏幕过近。当超过阈值时(过近),LED提醒。
import cv2
import mediapipe as mp
from pinpong.board import Board,NeoPixel,Pin
Board("uno").begin()
NEOPIXEL_PIN = Pin(Pin.D2)
PIXELS_NUM = 60 #灯数
np = NeoPixel(NEOPIXEL_PIN,PIXELS_NUM)
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
np.clear()
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for detection in results.detections:
mp_drawing.draw_detection(image, detection)
if detection.location_data.relative_bounding_box.width>0.4:
np.rainbow(0,60,0,0x00FF00)
else:
np.clear()
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
【模拟放大操作】
通过pynput库,模拟键盘和鼠标操作,“Ctrl+鼠标滚轮”放大和缩小网面上的文字。
import pynput
import time
keyboard =pynput.keyboard.Controller()
key=pynput.keyboard.Key
mouse = pynput.mouse.Controller()
time.sleep(10)
keyboard.press(key.ctrl)
mouse.scroll(0, 50)
keyboard.release(key.ctrl)
【完整代码】
import cv2
import mediapipe as mp
from pinpong.board import Board,NeoPixel,Pin
from pykeyboard import *
import pynput
import numpy as npy
import time
Board("uno").begin()
NEOPIXEL_PIN = Pin(Pin.D2)
PIXELS_NUM = 60 #灯数
np = NeoPixel(NEOPIXEL_PIN,PIXELS_NUM)
np.clear()
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
keyboard =pynput.keyboard.Controller()
key=pynput.keyboard.Key
mouse = pynput.mouse.Controller()
scrollnum=25
bs=0
# For webcam input:
cap = cv2.VideoCapture(0)
scroll=[]
bs1=0
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for detection in results.detections:
mp_drawing.draw_detection(image, detection)
width=detection.location_data.relative_bounding_box.width
if bs1<10:
bs1=bs1+1
scroll.append(width)
else:
scroll.append(width)
scroll.pop(0)
width=npy.mean(scroll)
if width>0.5:
np.rainbow(0,60,0,0x00FF00)
bs=1
elif bs==1:
bs=0
np.clear()
else:
width=int(width*100/10)
if width!=scrollnum:
temp=-width+scrollnum
keyboard.press(key.ctrl)
mouse.scroll(0, temp*10)#向上滚动50单位
keyboard.release(key.ctrl)
scrollnum=width
print(width)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
【演示视频】
https://www.bilibili.com/video/BV1xM4y1c7Av?share_source=copy_web
认真学习,谢谢分享! 这个根据视线距离调整页面缩放的想法非常有趣 好厉害呀!马上学习学习
页:
[1]