2811| 0
|
[平台测评] 【DFRobot行业AI开发者大赛】OpenVINO 模型浮点数据输入方法 |
OpenVINO 将 Intel 的各种计算设备整合在一起,方便地部署人工智能推理模型。但在官方的开发环境中,模型输入只给出了 Precision::U8 类型的数据转换函数:matU8ToBlob(),没有给出 Precision::FP32 类型输入数据的实现方法,使得其它浮点数输入模型转换为 IR 模型后不能准确推理。 这里给出一种实现 Precision::FP32 类型数据输入的方法,以方便大家使用。 首先将模型的输入精度设置为 FP32 : InputInfo::Ptr& inputInfoFirst = inputInfo.begin()->second; inputInfoFirst->setPrecision(Precision::FP32); input = inputInfo.begin()->first; 然后设置完成模型的其它参数,并将输入数据推入处理队列: Blob::Ptr inputBlob = request->GetBlob(input); matF32ToBlob(face, inputBlob, enquedFaces); 这里的 matF32ToBlob() 函数实现了 Precision::FP32 类型数据输入,具体定义如下: [mw_shl_code=cpp,false] void matFP32ToBlob(const cv::Mat& orig_image, InferenceEngine::Blob::Ptr& blob, int batchIndex = 0) { InferenceEngine::SizeVector blobSize = blob->getTensorDesc().getDims(); const size_t width = blobSize[3]; const size_t height = blobSize[2]; const size_t channels = blobSize[1]; InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob); if (!mblob) { THROW_IE_EXCEPTION << "We expect blob to be inherited from MemoryBlob in matF32ToBlob, " << "but by fact we were not able to cast inputBlob to MemoryBlob"; } // locked memory holder should be alive all time while access to its buffer happens auto mblobHolder = mblob->wmap(); float *blob_data = mblobHolder.as<float *>(); cv::Mat resized_image(orig_image); if (static_cast<int>(width) != orig_image.size().width || static_cast<int>(height) != orig_image.size().height) { cv::resize(orig_image, resized_image, cv::Size(width, height)); } int batchOffset = batchIndex * width * height * channels; for (size_t c = 0; c < channels; c++) { for (size_t h = 0; h < height; h++) { for (size_t w = 0; w < width; w++) { blob_data[batchOffset + c * width * height + h * width + w] = resized_image.at<float>(h, w, c); } } } }[/mw_shl_code] 以上就是一种便捷的浮点数输入方法,可以广泛应用于各种 IR 模型。 |
© 2013-2025 Comsenz Inc. Powered by Discuz! X3.4 Licensed