8191| 6
|
各种滤波算法的比较 |
1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小 不能消除滤波频率高于采样频率的1/2的干扰信号 8、加权递推平均滤波法 A、方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 通常是,越接近现时刻的数据,权取得越大。 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低 B、优点: 适用于有较大纯滞后时间常数的对象 和采样周期较短的系统 C、缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号 不能迅速反应系统当前所受干扰的严重程度,滤波效果差 9、消抖滤波法 A、方法: 设置一个滤波计数器 将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零 如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出) 如果计数器溢出,则将本次值替换当前有效值,并清计数器 B、优点: 对于变化缓慢的被测参数有较好的滤波效果, 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动 C、缺点: 对于快速变化的参数不宜 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统 10、限幅消抖滤波法 A、方法: 相当于“限幅滤波法”+“消抖滤波法” 先限幅,后消抖 B、优点: 继承了“限幅”和“消抖”的优点 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统 C、缺点: 对于快速变化的参数不宜 第11种方法:IIR 数字滤波器 A. 方法: 确定信号带宽, 滤之。 Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k) B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab) C. 缺点:运算量大。 //--------------------------------------------------------------------- 软件滤波的C程序样例 10种软件滤波方法的示例程序 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;count { value_buf[count] = get_ad(); delay(); } for (j=0;j { for (i=0;i { if ( value_buf>value_buf[i+1] ) { temp = value_buf; value_buf = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count { sum + = get_ad(); delay(); } return (char)(sum/N); } 4、递推平均滤波法(又称滑动平均滤波法) /* */ #define N 12 char value_buf[N]; char i=0; char filter() { char count; int sum=0; value_buf[i++] = get_ad(); if ( i == N ) i = 0; for ( count=0;count sum = value_buf[count]; return (char)(sum/N); } 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) /* */ #define N 12 char filter() { char count,i,j; char value_buf[N]; int sum=0; for (count=0;count { value_buf[count] = get_ad(); delay(); } for (j=0;j { for (i=0;i { if ( value_buf>value_buf[i+1] ) { temp = value_buf; value_buf = value_buf[i+1]; value_buf[i+1] = temp; } } } for(count=1;count sum += value[count]; return (char)(sum/(N-2)); } 6、限幅平均滤波法 /* */ 略 参考子程序1、3 7、一阶滞后滤波法 /* 为加快程序处理速度假定基数为100,a=0~100 */ #define a 50 char value; char filter() { char new_value; new_value = get_ad(); return (100-a)*value + a*new_value; } 8、加权递推平均滤波法 /* coe数组为加权系数表,存在程序存储区。*/ #define N 12 char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}; char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12; char filter() { char count; char value_buf[N]; int sum=0; for (count=0,count { value_buf[count] = get_ad(); delay(); } for (count=0,count sum += value_buf[count]*coe[count]; return (char)(sum/sum_coe); } 9、消抖滤波法 #define N 12 char filter() { char count=0; char new_value; new_value = get_ad(); while (value !=new_value); { count++; if (count>=N) return new_value; delay(); new_value = get_ad(); } return value; } 10、限幅消抖滤波法 /* */ 略 参考子程序1、9 11、IIR滤波例子 int BandpassFilter4(int InputAD4) { int ReturnValue; int ii; RESLO=0; RESHI=0; MACS=*PdelIn; OP2=1068; //FilterCoeff4[4]; MACS=*(PdelIn+1); OP2=8; //FilterCoeff4[3]; MACS=*(PdelIn+2); OP2=-2001;//FilterCoeff4[2]; MACS=*(PdelIn+3); OP2=8; //FilterCoeff4[1]; MACS=InputAD4; OP2=1068; //FilterCoeff4[0]; MACS=*PdelOu; OP2=-7190;//FilterCoeff4[8]; MACS=*(PdelOu+1); OP2=-1973; //FilterCoeff4[7]; MACS=*(PdelOu+2); OP2=-19578;//FilterCoeff4[6]; MACS=*(PdelOu+3); OP2=-3047; //FilterCoeff4[5]; *p=RESLO; *(p+1)=RESHI; mytestmul<<=2; ReturnValue=*(p+1); for (ii=0;ii<3;ii++) { DelayInput[ii]=DelayInput[ii+1]; DelayOutput[ii]=DelayOutput[ii+1]; } DelayInput[3]=InputAD4; DelayOutput[3]=ReturnValue; // if (ReturnValue<0) // { // ReturnValue=-ReturnValue; // } return ReturnValue; } |
© 2013-2024 Comsenz Inc. Powered by Discuz! X3.4 Licensed