3468| 2
|
[教程] 【智控万物】控制海康摄像头(续) |
以下视频为例5的演示(控制海康摄像头) 1、Python,语音识别 [mw_shl_code=python,false]# -*- coding: utf-8 -*- # Date : 2018-12-02 19:04:55 import wave import requests import time import base64 from pyaudio import PyAudio, paInt16 import webbrowser framerate = 16000 # 采样率 num_samples = 2000 # 采样点 channels = 1 # 声道 sampwidth = 2 # 采样宽度2bytes FILEPATH = 'speech.wav' base_url = "https://openapi.baidu.com/oauth/2.0/token?grant_type=client_credentials&client_id=%s&client_secret=%s" APIKey = "PK36Zo9eVbcDzAV2esTc5Zpc" SecretKey = "tnxmdSycvbrz6yRveYdRGOZE60nNkMLO" HOST = base_url % (APIKey, SecretKey) def getToken(host): res = requests.post(host) return res.json()['access_token'] def save_wave_file(filepath, data): wf = wave.open(filepath, 'wb') wf.setnchannels(channels) wf.setsampwidth(sampwidth) wf.setframerate(framerate) wf.writeframes(b''.join(data)) wf.close() def my_record(): pa = PyAudio() stream = pa.open(format=paInt16, channels=channels, rate=framerate, input=True, frames_per_buffer=num_samples) my_buf = [] # count = 0 t = time.time() print('正在录音...') while time.time() < t + 4: # 秒 string_audio_data = stream.read(num_samples) my_buf.append(string_audio_data) print('录音结束.') save_wave_file(FILEPATH, my_buf) stream.close() def get_audio(file): with open(file, 'rb') as f: data = f.read() return data def speech2text(speech_data, token, dev_pid=1537): FORMAT = 'wav' RATE = '16000' CHANNEL = 1 CUID = '*******' SPEECH = base64.b64encode(speech_data).decode('utf-8') data = { 'format': FORMAT, 'rate': RATE, 'channel': CHANNEL, 'cuid': CUID, 'len': len(speech_data), 'speech': SPEECH, 'token': token, 'dev_pid':dev_pid } url = 'https://vop.baidu.com/server_api' headers = {'Content-Type': 'application/json'} # r=requests.post(url,data=json.dumps(data),headers=headers) print('正在识别...') r = requests.post(url, json=data, headers=headers) Result = r.json() if 'result' in Result: return Result['result'][0] else: return Result def openbrowser(text): maps = { '百度': ['百度', 'baidu'], '腾讯': ['腾讯', 'tengxun'], '网易': ['网易', 'wangyi'] } if text in maps['百度']: webbrowser.open_new_tab('https://www.baidu.com') elif text in maps['腾讯']: webbrowser.open_new_tab('https://www.qq.com') elif text in maps['网易']: webbrowser.open_new_tab('https://www.163.com/') else: webbrowser.open_new_tab('https://www.baidu.com/s?wd=%s' % text) if __name__ == '__main__': #flag = 'y' #while flag.lower() == 'y': #print('请输入数字选择语言:') #devpid = input('1536:普通话(简单英文),1537:普通话(有标点),1737:英语,1637:粤语,1837:四川话\n') devpid='1536' my_record() TOKEN = getToken(HOST) speech = get_audio(FILEPATH) result = speech2text(speech, TOKEN, int(devpid)) print(result) if type(result) == str: #openbrowser(result.strip(',')) #flag = input('Continue?(y/n):') [/mw_shl_code] 2、Python发QQ电子邮件 [mw_shl_code=python,false]import smtplib from email.header import Header # 用来设置邮件头和邮件主题 from email.mime.text import MIMEText # 发送正文只包含简单文本的邮件,引入MIMEText即可 from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart # 发件人和收件人 sender = 'hbzlzx@qq.com' receiver = 'hbzlzx@qq.com' # 所使用的用来发送邮件的SMTP服务器 smtpServer = 'smtp.qq.com' # 发送邮箱的用户名和授权码(不是登录邮箱的密码) username = 'hbzlzx@qq.com' password = '***********************' mail_title = '监控自动报警' mail_body = '这里是邮件的正文' mail_msg= ''' <p>监控截图如下:</p> <p><img src="cid:image1"></p> ''' # 创建一个实例 msg = MIMEMultipart() msg['Subject'] = mail_title # 标题 msg['From'] = sender # 邮件中显示的发件人别称 msg['To'] = receiver # ...收件人... msg.attach(MIMEText(mail_msg, 'html', 'utf-8')) # 指定图片为当前目录 fp = open(r'.\img\image0.jpg', 'rb') msgImage = MIMEImage(fp.read()) fp.close() # 定义图片 ID,在 HTML 文本中引用 msgImage.add_header('Content-ID', '<image1>') msg.attach(msgImage) ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) # 附件-图片 image = MIMEImage(open(r'.\img\image0.jpg', 'rb').read(), _subtype=subtype) image.add_header('Content-Disposition', 'attachment', filename='img.jpg') msg.attach(image) try: smtp = smtplib.SMTP() # 创建一个连接 smtp.connect(smtpServer) # 连接发送邮件的服务器 smtp.login(username, password) # 登录服务器 smtp.sendmail(sender, receiver, msg.as_string()) # 填入邮件的相关信息并发送 print("邮件发送成功!!!") smtp.quit() except smtplib.SMTPException: print("邮件发送失败!!!") [/mw_shl_code] 4、百度人脸注册1(Token)。 ijvylcjwmezscadh [mw_shl_code=python,false]# -*- coding: utf-8 -*- from aip import AipFace APP_ID='15174864' API_KEY='z4iPlvW4VLKMwu4KG0Z3jUMq' SECRET_KEY='ghQO3vHmxsdCQswFx6DvGMGjbhgAoNXI' client = AipFace(APP_ID, API_KEY, SECRET_KEY) imageType = 'FACE_TOKEN' userId = "s230183198109263222" groupId = 'mxy' options = {} options["user_info"] =str("宋秀cc,ge7,232102198008113018,sxs,15030352887".encode()) data=client.faceGetlist(userId, groupId) if data["error_msg"]=='SUCCESS': image=data["result"]["face_list"][len(data["result"]["face_list"])-1]["face_token"] print(client.updateUser(image, imageType, groupId, userId, options)) data=client.getUser(userId, groupId) print(data) else: print(data)[/mw_shl_code] 5、调用监控摄像头,进行本地人脸检测(班级是否有回头说话,不戴口罩者),并截图保存,文件名有截取时间。 [mw_shl_code=python,false]import cv2,time classfier=cv2.CascadeClassifier("D:\\zaw\\xml\\haarcascade_frontalface_default.xml")#定义分类器 max_x=0 max_y=0 max_h=0 max_w=0 max=0 color = (255,0,155)#设置人脸框的颜色 #url = 'rtsp://admin:a12345678@172.20.0.81:554/1'#办公室 url = 'rtsp://admin:a12345678@172.20.0.32:554/1' cap = cv2.VideoCapture(url) path_name="./img" num=1 i=0 while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() # Display the resulting frame try: image=cv2.resize(frame, (800,600), interpolation=cv2.INTER_AREA) if i>30: i=0 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改) #如下三行是设定最小图像的大小 #第三个参数表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸), faceRects = classfier.detectMultiScale(image, 1.3,5, cv2.CASCADE_SCALE_IMAGE,(8,8))#人脸检测 print(len(faceRects)) max=0 if len(faceRects)>0:#如果人脸数组长度大于0 for faceRect in faceRects: #对每一个人脸画矩形框 x, y, w, h = faceRect if w*h>max : max=w*h max_x=x max_y=y max_h=h max_w=w now = time.localtime() img_name = "%s/%s.jpg" % (path_name, time.strftime("%Y-%m-%d %H:%M:%S",now).replace(":","-") ) print(img_name) image1 = image[max_y-10 : max_y + max_h + 10, max_x - 10: max_x + max_w + 10] cv2.imwrite(img_name, image1,[int(cv2.IMWRITE_PNG_COMPRESSION), 9]) num += 1 cv2.rectangle(image, (max_x, max_y), (max_x+max_w, max_y+max_h), color,2)#矩形的两个点(左上角与右下角),颜色,线的类型(不设置就 else: print(i) i=i+1 cv2.imshow('frame',image) except: print("False") cap = cv2.VideoCapture(url) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() [/mw_shl_code] xml.rar 6、先本地检测出人脸,再送百度云进行人脸比对 [mw_shl_code=python,false]import cv2,time from aip import AipFace import base64 from PIL import Image from io import BytesIO def frame2base64(frame): img = Image.fromarray(frame) #将每一帧转为Image output_buffer = BytesIO() #创建一个BytesIO img.save(output_buffer, format='JPEG') #写入output_buffer byte_data = output_buffer.getvalue() #在内存中读取 base64_data = base64.b64encode(byte_data) #转为BASE64 return base64_data #转码成功 返回base64编码 """ 你的 APPID AK SK """ APP_ID = '15174864' API_KEY = 'z4iPlvW4VLKMwu4KG0Z3jUMq' SECRET_KEY = 'ghQO3vHmxsdCQswFx6DvGMGjbhgAoNXI' client = AipFace(APP_ID, API_KEY, SECRET_KEY) classfier=cv2.CascadeClassifier("D:\\zaw\\xml\\haarcascade_frontalface_default.xml")#定义分类器 max_x=0 max_y=0 max_h=0 max_w=0 max=0 color = (255,0,155)#设置人脸框的颜色 url = 'rtsp://admin:a12345678@172.20.0.81:554/1' cap = cv2.VideoCapture(url) path_name="./img" num=1 i=0 while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() # Display the resulting frame #try: image=cv2.resize(frame, (800,600), interpolation=cv2.INTER_AREA) if i>30: i=0 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改) #如下三行是设定最小图像的大小 #第三个参数表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸), faceRects = classfier.detectMultiScale(image, 1.3,2, cv2.CASCADE_SCALE_IMAGE,(32,32))#人脸检测 print(len(faceRects)) max=0 if len(faceRects)>0:#如果人脸数组长度大于0 for faceRect in faceRects: #对每一个人脸画矩形框 x, y, w, h = faceRect if w*h>max : max=w*h max_x=x max_y=y max_h=h max_w=w img_name = "%s/%d.jpg" % (path_name, num ) print(img_name) image1 = image[max_y-10 : max_y + max_h + 10, max_x - 10: max_x + max_w + 10] image1 =frame2base64(image1) image1=str(image1, encoding='utf-8')#不能传入字节 imageType = "BASE64" groupIdList = "sxs,mxy" """ 如果有可选参数 """ options = {} options["quality_control"] = "NORMAL" options["liveness_control"] = "LOW" options["max_user_num"] = 1 """ 带参数调用人脸搜索 """ data=client.search(image1, imageType, groupIdList, options) print(data) cv2.imwrite(img_name, image1,[int(cv2.IMWRITE_PNG_COMPRESSION), 9]) num += 1 cv2.rectangle(image, (max_x, max_y), (max_x+max_w, max_y+max_h), color,2)#矩形的两个点(左上角与右下角),颜色,线的类型(不设置就 else: print(i) i=i+1 cv2.imshow('frame',image) """except: print("False") cap = cv2.VideoCapture(url)""" if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() [/mw_shl_code] 7、人脸识别加蓝牙指令发送 [mw_shl_code=python,false]from aip import AipBodyAnalysis import pyttsx3,cv2 import numpy as np import serial #包含相应的库 import sys,time import pyttsx3 engine = pyttsx3.init()#语音初始化 """ 你的 APPID AK SK """ APP_ID = '14333301' API_KEY = '0OoR1G35nUEKt1E2xagNcr6l' SECRET_KEY = 'kUoHSSsbMuRcuBT2xWMdWXwXv57rnxW5' client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)#百度手势识别初始化 #ser=serial.Serial("com4",9600,timeout=0.5)#winsows系统使用com1口连接串行口 cv2.namedWindow("face")#命名一个窗口 cap=cv2.VideoCapture(1)#打开1号摄像头 success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身 color = (55,255,155)#设置人脸框的颜色 classfier=cv2.CascadeClassifier("D:\\zaw\\xml\\haarcascade_fullbody.xml")#定义分类器 max_x=0 max_y=0 max_h=0 max_w=0 max=0 def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() engine.say('开始识别') engine.runAndWait() while 1: success, frame = cap.read() size=frame.shape[:2]#获得当前桢彩色图像的大小 #输入图像,尽量使用灰度图以加快检测速度 image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵 image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改) cv2.equalizeHist(image, image)#灰度图像进行直方图等距化 #如下三行是设定最小图像的大小 divisor=32#(480,640)minSize和maxSize用来限制得到的目标区域的范围。如果视频中误检到很多无用的小方框,那么就把minSize的尺寸改大一些,默认的为30*30。 h, w = size #print(h,w) minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数 #第三个参数表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸), faceRects = classfier.detectMultiScale(image, 1.3,2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测 max=0 if len(faceRects)>0:#如果人脸数组长度大于0 for faceRect in faceRects: #对每一个人脸画矩形框 x, y, w, h = faceRect if x*y>max : max=x*y max_x=x max_y=y max_h=h max_w=w print(x,y) cv2.rectangle(frame, (max_x, max_y), (max_x+max_w, max_y+max_h), color,6)#矩形的两个点(左上角与右下角),颜色,线的类型(不设置就默认) if(0): if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(str(x)) #相对蓝牙来说向外输出给用户 print ('输出:',x) time.sleep(0.1) #必要的延时 engine.say('左转') engine.runAndWait() except: ser.close() print('退出3') time.sleep(1) sys.exit() else : print('没有识别到目标,停止') if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write('0') #相对蓝牙来说向外输出给用户 time.sleep(0.1) #必要的延时 except: ser.close() print('退出3') time.sleep(1) sys.exit() #engine.say('没有识别到目标,停止') #engine.runAndWait() cv2.imshow('face', frame)#显示图像 key=cv2.waitKey(1)#时间短,接收不到按键 c = chr(key & 255) if c in ['q', 'Q', chr(27)]: break cap.release() cv2.destroyWindow('face') [/mw_shl_code] 8、手势识别加蓝牙指令发送 [mw_shl_code=python,false]from aip import AipBodyAnalysis import pyttsx3,cv2 import numpy as np import serial #包含相应的库 import sys,time import pyttsx3 engine = pyttsx3.init()#语音初始化 """ 你的 APPID AK SK """ APP_ID = '14333301' API_KEY = '0OoR1G35nUEKt1E2xagNcr6l' SECRET_KEY = 'kUoHSSsbMuRcuBT2xWMdWXwXv57rnxW5' client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)#百度手势识别初始化 ser=serial.Serial("com4",9600,timeout=0.5)#winsows系统使用com1口连接串行口 cv2.namedWindow("face")#命名一个窗口 cap=cv2.VideoCapture(1)#打开1号摄像头 success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身 color = (55,255,155)#设置人脸框的颜色 classfier=cv2.CascadeClassifier("D:\\zaw\\xml\\haarcascade_frontalface_alt2.xml")#定义分类器 max_x=0 max_y=0 max_h=0 max_w=0 max=0 def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() engine.say('开始识别') engine.runAndWait() while 1: success, frame = cap.read() size=frame.shape[:2]#获得当前桢彩色图像的大小 #输入图像,尽量使用灰度图以加快检测速度 image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵 image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改) cv2.equalizeHist(image, image)#灰度图像进行直方图等距化 #如下三行是设定最小图像的大小 divisor=32#(480,640)minSize和maxSize用来限制得到的目标区域的范围。如果视频中误检到很多无用的小方框,那么就把minSize的尺寸改大一些,默认的为30*30。 h, w = size print(h,w) minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数 #第三个参数表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸), faceRects = classfier.detectMultiScale(image, 1.3,2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测 print(len(faceRects)) max=0 if len(faceRects)>0:#如果人脸数组长度大于0 for faceRect in faceRects: #对每一个人脸画矩形框 x, y, w, h = faceRect if x*y>max : max=x*y max_x=x max_y=y max_h=h max_w=w cv2.imwrite('.\\img\\image0.jpg', frame) image = get_file_content('.\\img\\image0.jpg') cv2.rectangle(frame, (max_x, max_y), (max_x+max_w, max_y+max_h), color,2)#矩形的两个点(左上角与右下角),颜色,线的类型(不设置就默认) """ 调用手势识别""" data=client.gesture(image) print (data) if data['result_num']>0 : for s in data['result'] : classname=s['classname'] if classname=='Face' : say='只识别出人脸,没有手势' elif classname=='other' : say='没有人脸,没有手势,请重新拍照' else : if classname=='Point' : say='one' break elif classname=='Two' : say='Two' elif classname=='Three' : say='Three' break elif classname=='Four' : say='Four' break elif classname=='Six' : say='Six' if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(b'L') #相对蓝牙来说向外输出给用户 print ('左转') time.sleep(0.1) #必要的延时 engine.say('左转') engine.runAndWait() except: ser.close() print('退出3') time.sleep(1) sys.exit() break elif classname=='Seven' : say='Seven' break elif classname=='Eight' : say='Eight' if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(b'R') #相对蓝牙来说向外输出给用户 print ('右转') time.sleep(0.1) #必要的延时 engine.say('右转') engine.runAndWait() except: ser.close() print('退出4') time.sleep(1) sys.exit() break elif classname=='Nine' : say='Nine' break elif classname=='Rock' : say='Rock' break elif classname=='Heart_3' : say='双手比心' break elif classname=='Heart_1' : say='双手比心' break elif classname=='Heart_2' : say='双手比心' break elif classname=='Palm_up' : say='掌心向上' break elif classname=='ILY' : say='我爱你' break elif classname=='Thumb_down' : say='Diss' break elif classname=='Thumb_up' : say='点赞' break elif classname=='Heart_single' : say='单手比心' break elif classname=='Honour' : say='作别' break elif classname=='Congratulation' : say='作揖' break elif classname=='Prayer' : say='祈祷' break elif classname=='Ok' : say='OK' if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(b'G') #相对蓝牙来说向外输出给用户 print ('前进') time.sleep(0.1) #必要的延时 engine.say('前进') engine.runAndWait() except: ser.close() print('退出2') time.sleep(1) sys.exit() break elif classname=='Fist' : say='拳头' if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(b'B') #相对蓝牙来说向外输出给用户 print ('后退') time.sleep(0.1) #必要的延时 engine.say('停止') engine.runAndWait() except: ser.close() print('退出2') time.sleep(1) sys.exit() break elif classname=='Five' : say='掌心向前' if ser.isOpen() == False: ser.open() if ser.isOpen() == False: break try: ser.write(b'S') #相对蓝牙来说向外输出给用户 print ('停止') time.sleep(0.1) #必要的延时 engine.say('停止') engine.runAndWait() except: ser.close() print('退出3') time.sleep(1) sys.exit() break else : print('没有人脸,没有手势,请重新拍照') engine.say('没有人脸,没有手势,请重新拍照') engine.runAndWait() cv2.imshow('face', frame)#显示图像 key=cv2.waitKey(1)#时间短,接收不到按键 c = chr(key & 255) if c in ['q', 'Q', chr(27)]: break cap.release() cv2.destroyWindow('face') [/mw_shl_code] 9、Python显示窗口 [mw_shl_code=python,false]import tkinter as tk # 建立tkinter窗口,设置窗口标题 def btnHelloClicked(): labelHello.config(text = "Hello!") top = tk.Tk() top.title("Hello Test") # 在窗口中创建标签 labelHello = tk.Label(top, text = "Hello Tkinter!") labelHello.pack() btn = tk.Button(top, text = "Hello", command = btnHelloClicked) btn.pack() # 运行并显示窗口 top.mainloop()[/mw_shl_code] |
© 2013-2025 Comsenz Inc. Powered by Discuz! X3.4 Licensed